-2x^2+71=(x+5)(x-5)

Simple and best practice solution for -2x^2+71=(x+5)(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x^2+71=(x+5)(x-5) equation:



-2x^2+71=(x+5)(x-5)
We move all terms to the left:
-2x^2+71-((x+5)(x-5))=0
We use the square of the difference formula
-2x^2+x^2+25+71=0
We add all the numbers together, and all the variables
-1x^2+96=0
a = -1; b = 0; c = +96;
Δ = b2-4ac
Δ = 02-4·(-1)·96
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*-1}=\frac{0-8\sqrt{6}}{-2} =-\frac{8\sqrt{6}}{-2} =-\frac{4\sqrt{6}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*-1}=\frac{0+8\sqrt{6}}{-2} =\frac{8\sqrt{6}}{-2} =\frac{4\sqrt{6}}{-1} $

See similar equations:

| y/13=4 | | 4+x-2+3x=26 | | 4+x-2+3x=24 | | 4+x-2+3x=16 | | x(2x-13)=-15 | | (7+x)+(2–3x)=21 | | 2y/3=3y+6/2 | | 7x+26°+x=180° | | 3x+30°=180 | | -3(22-8)+20z=16 | | 9m/12=1 | | 6(x+8)=-38 | | 5x-1=18x+36 | | 18.54/3.18=x/5.3 | | 35=3x-5 | | 2x+3=3-2x+16 | | 7×(x-1)=2=7x-4 | | 14+5z=9z= | | -16+4-2x=-4x-7= | | x=58x+2= | | 6x+1=3+13 | | 0=x^2-10x+61 | | 4/5x-4=6/3x-7 | | (7.25h)+5=(6.5h)+10.25 | | 6x-5/3x+4=5/8 | | 9x+5=8(x-6) | | 5x-10=10x+11 | | F(x)=5X²+100 | | 7x-2=5×+14 | | 67-6z=5(z-2) | | 14x+30=58 | | 12x+3(x-5)=8 |

Equations solver categories